SKILLS Helping You Develop	EED	Area, Surface Area \& Volume reference sheet		
Two-dimensional plane shapes	Area The measure of how many squares will fit into a shape. Units ${ }^{2}$	Three-dimensional solid shapes	Surface Area The measure of the area of all outward facing sides. Units²	Volume The measure of how many cubes will fit into a shape. Units ${ }^{3}$
	$\begin{gathered} \text { Area }=a^{2} \text { or } a \times a \\ \text { Example: } \\ a=5 \mathrm{~cm} \\ \text { Are }=5^{2}=25 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=6 \times \mathrm{a}^{2} \\ \text { Example: } \\ a=5 \mathrm{~cm} \\ \text { Surface Area }=150 \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} \text { Volume }=a^{3} \text { or } a \times a \times a \\ \text { Example: } \\ a=5 \mathrm{~cm} . \\ \text { Volume }=125 \mathrm{~cm}^{3} \end{gathered}$
	$\begin{gathered} \text { Area }=w \times h \\ \text { Example: } \\ w=\text { width }=10 \mathrm{~cm} \\ \text { height }=20 \mathrm{~cm} \\ \text { Area }=10 \times 20=200 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=2 \times \mathrm{ba}+\mathrm{la} \\ \text { Example: } \\ \text { ba }=\text { basearea }=20 \mathrm{~cm}^{2} \\ \text { la }=\text { lateral area (all sides) }=60 \mathrm{~cm}^{2} \\ \text { Surface area }= \\ 2 \times 20+60=100 \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} \text { Volume }=\mathrm{ba} \times \mathrm{h} \\ \text { Example: } \\ \text { ba }=\text { base area }=20 \mathrm{~cm}^{2} \\ h=\text { height }=5 \mathrm{~cm} \\ \text { Volume }=20 \times 5=100 \mathrm{~cm}^{3} \end{gathered}$
	$\begin{gathered} \text { Area }=b \times h \times 0.5 \\ \text { Example: } \\ b=\text { base }=20 \mathrm{~cm} \\ h=\text { vertical height }=15 \mathrm{~cm} \\ \text { Area }=20 \times 15 \times 0.5=150 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=b a+l a \\ \text { Example: } \\ \text { ba }=\text { base area }=16 \mathrm{~cm}^{2} \\ \text { la }=\text { lateral area }(\text { all sides })=60 \mathrm{~cm}^{2} \\ \text { Surface area }=16+60=76 \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} \text { Volume }=\text { ba } \times \mathrm{h} \times 1 / 3 \\ \text { Example: } \\ \text { ba }=\text { base area }=16 \mathrm{~cm}^{2} \\ h=\text { height }=9 \mathrm{~cm} \\ \text { Volume }=16 \times 9 \times 1 / 3=48 \mathrm{~cm}^{3} \end{gathered}$
	Area $=n \times s \times a \times 0.5$ Example: $n=$ number of sides $=6$ length of side $=5 \mathrm{~cm}$ $a=$ apothem $=15 \mathrm{~cm}$ Area $=6 \times 5 \times 15 \times 0.5=225 \mathrm{~cm}^{2}$		$\begin{gathered} \text { Surface Area }=\mathrm{fa} \times \mathrm{s} \\ \text { Example: } \\ f a=\text { area of one side }=200 \mathrm{~cm}^{2} \\ s=\text { number of sides }=12 \end{gathered}$ $\text { Surface area }=200 \times 12=2400 \mathrm{~cm}^{2}$	Example: There is no simple generic formula for working out the volume of a regular polyhedron.
	$\begin{gathered} \text { Area }=\pi \times r^{2} \\ \text { Example: } \\ \pi=\text { pi }=3.14 \\ r=\text { radius }=5 \mathrm{~cm} \\ \text { Area } 3.14 \times 5^{2}=3.14 \times 5 \times 5= \\ 78.5 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=4 \times \pi \times r^{2} \\ \text { Example: } \\ r=\text { radius }=4.5 \mathrm{~cm} \\ \text { Surface area }=4 \times 3.14 \times 20.25 \\ =254.5 \mathrm{~cm}^{2} \text { (Approx) } \end{gathered}$	$\begin{gathered} \text { Volume }=4 / 3 \times \pi \times r^{3} \\ \text { Example: } \\ r=\text { radius }=4.5 \mathrm{~cm} \\ \text { Volume }=4 / 3 \times 3.14 \times 4.5^{3} \\ =381.5 \mathrm{~cm}^{3}(\mathrm{Approx}) \end{gathered}$
	Area $=\pi \times a \times b$ Example: $\pi=$ pi $=3.14$ $a=$ radius of long axis $=6$ $b=$ radius short axis $=4$ Area $=3.14 \times 6 \times 4 \times 5=75.36 \mathrm{~cm}^{2}$		$\begin{gathered} \text { Surface Area }=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2} \\ \text { Example: } \\ r=\text { radius }=5 \mathrm{~cm} \\ h=\text { height }=10 \mathrm{~cm} \\ \text { Surface area }=2 \times 3.14 \times 5 \times 10 \\ +2 \times 3.14 \times 25=471 \mathrm{~cm}^{2} \end{gathered}$	Volume $=\pi \times r^{2} \times h$ Example: $r=\text { radius }=5 \mathrm{~cm}$ $h=\text { height }=10 \mathrm{~cm}$ Volume $=3.14 \times 25 \times 10$ $=785 \mathrm{~cm}^{3}$ (Approx)

Definitions

Apothem: The line connecting the centre of a regular polygon with one of its sides.
The line is perpendicular (at a right angle) to the side.
Axis: A line of reference about which an object, point or line is drawn, rotated or measured. In a symmetrical shape, an axis is usually a line of symmetry.

Radius: The distance from the geometric centre of a curved shape to its circumference (edge).
For more information and examples of these calculations see: Calculating Area, Three-Dimensional Shapes and Calculating Volume.

